Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Optical nondestructive testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 414-417, October 31–November 4, 2021,
Abstract
PDF
This paper presents a die-level sample preparation technique that uses selective etch chemistry and laser interferometry to expose the entire top metal layer surface for electrical fault isolation. It also describes a novel e-beam based probing technique called StaMPS which is used to isolate logic structure failures through SEM image contrasts. By landing SEM probe tips on exposed metal pads and controlling logic states via an applied bias, different levels of contrast are created highlighting structural failure locations. Die-level sample preparation combined with e-beam fault isolation optimizes turnaround time by delayering die in less than an hour and by locating several types of defects in a single sample.
Proceedings Papers
ISTFA1999, ISTFA 1999: Conference Proceedings from the 25th International Symposium for Testing and Failure Analysis, 217-223, November 14–18, 1999,
Abstract
PDF
Cracks and other defects in ceramic materials can be difficult or impossible to examine and photograph due to the extreme lack of contrast. A method for inspecting translucent ceramics using scattered light, also known as vicinal illumination, will be described. This method has been known in the ceramics industry for quite some time, but is not well known in the testing and failure analysis community. Electronics applications include substrates, packages, multilayer capacitors, and thin film resistors. Ceramic materials are used in electronic applications as microcircuit packages and substrates which carry signals and power between microcircuits. Fine cracks in ceramic materials can result in mechanical failures, electrical failures, and loss of hermeticity. Often, fine cracks are difficult or impossible to detect using standard nondestructive inspection techniques such as visual inspection, ultrasonic inspection, or vapor crack detection. Dye penetrant inspection is usually effective, but contaminates the part, which is unacceptable for space flight hardware. One effective nondestructive inspection method of detecting cracks involves examining the way in which light scatters through the ceramic material when viewed with a standard bright field reflected light microscope. This method, termed vicinal illumination, has been used for detecting cracks during failure analyses of several part types, and screening of space flight hardware. The technique has proven effective on several different types of ceramic materials as well. A related method for use with dark field equipment has also been used to successfully locate otherwise invisible cracks.