Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Thermal fatigue fracture
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2013, ISTFA 2013: Conference Proceedings from the 39th International Symposium for Testing and Failure Analysis, 283-291, November 3–7, 2013,
Abstract
View Paper
PDF
Performance degradation due to fatigue accumulation from the repetitive switching of high load current is critical to understanding robust power MOSFET product design. In this paper, we present a novel high-current-temperature (HCT) characterization system used to investigate real world powercycling failure mechanisms. The effects of electric current Joule heating, non-uniform temperature distribution and performance deterioration of discrete power devices are discussed. Thermal fatigue of solder joints and thick aluminum wire bonding are common weak spots with regard to power-cycling capability. We report performance failure mechanisms and discuss the superposition of contributing factors in defining root cause. Results discuss various package influences as part of a robust power MOSFET development process.
Proceedings Papers
ISTFA2006, ISTFA 2006: Conference Proceedings from the 32nd International Symposium for Testing and Failure Analysis, 228-229, November 12–16, 2006,
Abstract
View Paper
PDF
Thermal fatigue cracking of lead-free solder joints within flipchip packages was investigated in this study by using scanning acoustic microscope (SAM) and SEM. The distribution of substrate delaminations was mapped with SAM of high depth resolution and observed in cross-section with SEM to find the mechanism of crack growth during thermal reliability tests. The study revealed that the interfacial crack always initiated from the pad edge. This is attributed to the coefficient of thermal expansion (CTE) mismatch between underfill and the PCB substrate. The propagation of fatigue crack within solder joint is closely related to the morphology of interfacial/intergranular intermetallic compound (IMC) formed at the elevated temperature of thermal cycle.