Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Electroless plating
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 327-329, November 13–17, 2011,
Abstract
View Paper
PDF
As device dimensions continue to shrink, process defects tend to become more subtle. For most failure analysis (FA) studies, it is important to identify the defect location for the subsequent material analysis. To achieve this, nano-probing has been widely used in the FA community. Copper (Cu) contacts posed a significant challenge to nano-probing since Cu is soft and tends to deform during measurements. In addition, Cu oxidizes quickly in air, increasing contact resistance significantly between the probes and devices. This paper introduces electroless cobalt (Co) plating on Cu contacts for nano-probing to overcome these technical problems. As Cu is soft and oxidized quickly in air, the technique presented in this paper provides a technical solution for nano-probing on Cu contacts. With carefully characterized Co plating time, this technique can be used not only on Cu contacts but also on Cu interconnection.
Proceedings Papers
ISTFA2005, ISTFA 2005: Conference Proceedings from the 31st International Symposium for Testing and Failure Analysis, 316-321, November 6–10, 2005,
Abstract
View Paper
PDF
The electrical interface, in terms of a reliable, low ohmic and defined connection with the device or die is the most relevant aspect in the characterization of products. Bad or undefined contacts inhibit an exact assessment of the functionality. This paper describes different contact related failures analyzed in our lab and gives the solutions we used to solve the problems. Especially an electroless (nickel)-gold plating method has been optimized and is described in details. Low ohmic and reliable contacts can be produced; the paper shows several applications to improve the contact quality in different domains of the failure analysis business
Proceedings Papers
ISTFA2000, ISTFA 2000: Conference Proceedings from the 26th International Symposium for Testing and Failure Analysis, 355-366, November 12–16, 2000,
Abstract
View Paper
PDF
A common pad finish on area array (BGA or CSP) packages and printed wiring board (PWB) substrates is Ni/Au, using either electrolytic or electroless deposition processes. Although both Ni/Au processes provide flat, solderable surface finishes, there are an increasing number of applications of the electroless nickel/immersion gold (ENi/IAu) surface finish in response to requirements for increased density and electrical performance. This increasing usage continues despite mounting evidence that Ni/Au causes or contributes to catastrophic, brittle, interfacial solder joint fractures. These brittle, interfacial fractures occur early in service or can be generated under a variety of laboratory testing conditions including thermal cycling (premature failures), isothermal aging (high temperature storage), and mechanical testing. There are major initiatives by electronics industry consortia as well as research by individual companies to eliminate these fracture phenomena. Despite these efforts, interfacial fractures associated with Ni/Au surface finishes continue to be reported and specific failure mechanisms and root cause of these failures remains under investigation. Failure analysis techniques and methodologies are crucial to advancing the understanding of these phenomena. In this study, the scope of the fracture problem is illustrated using three failure analysis case studies of brittle interfacial fractures in area array solder interconnects. Two distinct failure modes are associated with Ni/Au surface finishes. In both modes, the fracture surfaces appear to be relatively flat with little evidence of plastic deformation. Detailed metallography, scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and an understanding of the metallurgy of the soldering reaction are required to avoid misinterpreting the failure modes.