Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Zhanjun Shu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2020, ISTFA 2020: Papers Accepted for the Planned 46th International Symposium for Testing and Failure Analysis, 345-351, November 15–19, 2020,
Abstract
View Paper
PDF
Scan-based test has been the industrial standard method for screening manufacturing defects. Scan chains are vulnerable to most manufacturing defects and process variations. Therefore, chain failures diagnosis is critical for successful yield learning. However, traditional chain diagnosis requires failing masking patterns to identify faulty chains and their fault types for designs with test compression. In other words, it cannot diagnose the chain failures which don't fail the masking chain patterns. Unfortunately, advanced FinFET technologies with more manufacturing challenges and higher process variations may result in more subtle chain timing failures which can't be detected by chain masking patterns. In this work, we present a new debugging methodology, which combines chain diagnosis and tester-based test to effectively diagnose such intermittent chain failures. The proposed methodology is validated on silicon data for one modern large SOC design and successfully identified all scan cells with hold-time issues, which were validated by STA with corrected models. The subsequent mask fixes for these identified hold-time violations resolved this yield issue and dramatically improve the yield.