Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Vijay Gupta
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2004, ISTFA 2004: Conference Proceedings from the 30th International Symposium for Testing and Failure Analysis, 267-276, November 14–18, 2004,
Abstract
PDF
Abstract The continuing evolution of semiconductor packages to finer solder ball pitches, shrinking solder ball volume, and new solder materials, mandates the availability of methods to accurately assess solder joint reliability both at the component and at the board level. Many tests in use for this purpose cannot provide direct measurements of solder joint interfacial strength. This paper reports on the investigation of laser spallation for interfacial strength assessments and understanding of failure mechanisms on chip scale package (CSP) solder joints.
Proceedings Papers
ISTFA2000, ISTFA 2000: Conference Proceedings from the 26th International Symposium for Testing and Failure Analysis, 25-33, November 12–16, 2000,
Abstract
PDF
Abstract A laser spallation technique to measure the tensile strength of thin film interfaces is introduced. In this technique, a laser-generated stress wave of nanosecond duration in the substrate spalls off (completely removes) a coating deposited on the substrate’s front surface. The threshold laser energy is converted into the tensile stress (strength) at the failure site (usually the interface) by using an optical interferometer. Because of the ultra-short duration of the stress wave loading, all plastic deformation processes that usually accompany the coating decohesion event are suppressed such that the measured value can be regarded as fundamental or intrinsic to the material system (including the defects, if any). Application of this technique to test planar as well geometrically heterogeneous interfaces in IC’s, substrates, and packages is demonstrated. The technique is used to quantify the degrading effects of moisture and in-situ temperature rise on the tensile strength of a polyimide/Si3N4/Si interface system whose strength was systematically degraded by exposing the samples to controlled humidity (50-70% RH) conditions for varying duration (12-96 hrs) and temperatures (30°C-150°C). These measurements of strength degradation can now be used to predict device reliability from a fundamental standpoint in conjunction with simulations capable of predicting time-dependent stress concentrations, moisture accumulation, and temperature rise at critical interfaces during processing and service environment in actual systems.