Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Travis Eiles
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2016, ISTFA 2016: Conference Proceedings from the 42nd International Symposium for Testing and Failure Analysis, 27-31, November 6–10, 2016,
Abstract
PDF
Abstract This paper demonstrates a breakthrough method of visible laser probing (VLP), including an optimized 577 nm laser microscope, visible-sensitive detector, and an ultimate-resolution gallium phosphide-based solid immersion lens on the 10 nm node, showing a 110 nm resolution. This is 2x better than what is achieved with the standard suite of probing systems using typical infrared (IR) wavelengths today. Since VLP provides a spot diameter reduction of 0.5x over IR methods, it is reasonable, based simply on geometry, to project that VLP using the 577 nm laser will meet the industry needs for laser probing for both the 10 nm and 7 nm process nodes. Based on its high level of optimization, including high resolution and specialized solid immersion lens, it is highly likely that this VLP technology will be one of the last optically-based fault isolation methods successfully used.
Proceedings Papers
ISTFA2010, ISTFA 2010: Conference Proceedings from the 36th International Symposium for Testing and Failure Analysis, 224-230, November 14–18, 2010,
Abstract
PDF
Abstract In this paper, we report on the first observation and study of two-photon absorption (TPA) based laser assisted device alteration (LADA) using a continuous-wave (CW) 1340nm laser. The study was conducted using LADA systems equipped with high numerical aperture (NA) liquid and solid immersion lens objectives on Intel’s 45 nm and 32 nm multiprocessor units (MPU) and test chips. The power densities achievable using these lenses are similar to those reported in the literature for TPA in silicon of CW 1455nm light [1]. We show that the induced photocurrent has a quadratic dependence on the input laser power, a key indicator of two-photon phenomenon. Our results imply that even when using 1340nm wavelength CW lasers, there is a potential for laser invasiveness with the high power densities achievable using high NA objectives. Laser induced damage of the DUT is also a possibility at these high power densities, particularly with the solid immersion lens (SIL). However, we show that the DUT damage threshold can be increased by reducing the DUT’s temperature. Finally, we present results demonstrating a >40% improvement in localization of critical timing faults using TPA based LADA, when compared to traditional 1064nm wavelength (single-photon absorption) LADA.
Proceedings Papers
Laser Voltage Probe (LVP): A Novel Optical Probing Technology for Flip-Chip Packaged Microprocessors
ISTFA2000, ISTFA 2000: Conference Proceedings from the 26th International Symposium for Testing and Failure Analysis, 3-8, November 12–16, 2000,
Abstract
PDF
Abstract A novel optical probing technique to measure voltage waveforms from flip-chip packaged complementary metal-oxide-semiconductor (CMOS) integrated circuits (IC) is described. This infrared (IR) laser based technique allows signal waveform acquisition and high frequency timing measurement directly from active PN junctions through the silicon backside substrate on IC’s mounted in flip-chip, stand-alone, or multi-chip module packages as well as wire-bond packages on which the chip backside is accessible. The technique significantly improves silicon debug & failure analysis (FA) through-put time (TPT) as compared to backside electron-beam (E-beam) probing because of the elimination of backside trenching and probe hole generation operations.