Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Te-O Jung
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2008, ISTFA 2008: Conference Proceedings from the 34th International Symposium for Testing and Failure Analysis, 315-316, November 2–6, 2008,
Abstract
PDF
Abstract Scanning electron microscope (SEM) and high resolution transmission electron microscope analysis combined with focused ion beam have been used to locate the physical defect. Visualizing the defect by these techniques was found to be difficult. This paper introduces a novel physical failure analysis technique using 3D rotation STEM imaging. It describes the electrical method of analyzing the cause of failure. Trying to determine with 2D imaging if the defect was a crystalline or not was problematical. To resolve the issue, a pillar type of specimen was made by utilizing a 3D rotation holder and observed with the sample from different directions. Results confirmed that the generation of dislocations can occur according to the variation of the stress transferred to the bulk Si. The variation was due to stress intensity and pattern isolation as a function of the film volume of spin on dielectric material and shallow trench isolation size.