Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Stefaan Verleye
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Fast and Effective Sample Preparation Technique for Backside Fault Isolation on GaN Packaged Devices
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 279-282, October 31–November 4, 2021,
Abstract
PDF
This paper describes a procedure for preparing packaged GaN devices for photon emission microscopy from the backside, which has proven to be an effective method for isolating faults. The deprocessing technique was developed for GaN devices formed on thick p ++ silicon substrates mounted in quad-flat no-lead (QFN) packages connected by gold wires. It consists of mechanical polishing, which removes backside metal and packaging material, and selective etching, which quickly etches the silicon while leaving the gold wires intact for electrical measurements. The authors describe each step of the process in detail and explain how emission spots are marked with a UV laser and analyzed in a FIB-SEM system to determine the underlying cause of failure.
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 430-435, October 31–November 4, 2021,
Abstract
PDF
This paper presents a method that allows top view SEM inspection on GaN devices previously subjected to PEM analysis from the backside and the associated sample preparation procedures. By filling the backside cavity with glob-top resin and epoxying the device to a piece of silicon, it is possible to remove all covering layers with a sequence of wet etches. A dried Ag liquid strap eliminates SEM charging problems and backside laser marks are made visible from the front side using an IR wavelength. The paper describes each step of the process in detail along with the results of the frontside SEM inspection.
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 182-191, November 10–14, 2019,
Abstract
PDF
In this paper the authors will discuss an application of Single Shot Logic (SSL) patterns used for further localizing IDDQ failures using ATPG constraints and targeted faults. This new method provides the analyst a possibility of performing circuit analysis using IDDQ measurement results as a pass/fail criterion rather than logic mismatches. Once a defective area was partially isolated through fault localization, SSL patterns were created to control individual internal node logic states in a deterministic way. IDDQ was measured at each SSL iteration where schematic analysis can further isolate the failure to a specific location. Two case studies will be discussed to show how this technique was used on actual failing units, with detailed explanation of the steps performed that led to a more precise determination of the fault location in the suspect cell.