Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Sheraz Gul
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2020, ISTFA 2020: Papers Accepted for the Planned 46th International Symposium for Testing and Failure Analysis, 79-83, November 15–19, 2020,
Abstract
View Paper
PDF
Currently gaps in non-destructive 2D and 3D imaging in PFA for advanced packages and MEMS exist due to lack of resolution to resolve sub-micron defects and the lack of contrast to image defects within the low Z materials. These low Z defects in advanced packages include sidewall delamination between Si die and underfill, bulk cracks in the underfill, in organic substrates, Redistribution Layer, RDL; Si die cracks; voids within the underfill and in the epoxy. Similarly, failure modes in MEMS are often within low Z materials, such as Si and polymers. Many of these are a result of mechanical shock resulting in cracks in structures, packaging fractures, die adhesion issues or particles movements into critical locations. Most of these categories of defects cannot be detected non-destructively by existing techniques such as C-SAM or microCT (micro x-ray computed tomography) and XRM (X-ray microscope). We describe a novel lab-based X-ray Phase contrast and Dark-field/Scattering Contrast system with the potential to resolve these types of defects. This novel X-ray microscopy has spatial resolution of 0.5 um in absorption contrast and with the added capability of Talbot interferometry to resolve failure issues which are related to defects within organic and low Z components.