Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Seo Kyung Jeong
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 322-326, November 13–17, 2011,
Abstract
PDF
Abstract In this work, crystalline defects (dislocations) occurred in the silicon substrate during annealing SOD (Spin On Dielectric) which is an easy choice for its superior STI gap-fill ability. The reversal of address data that share same SIO (Signal Input Out) line in a DQ arises from crystalline defects. The failure analysis of physical methods has difficulty finding minute defects within the active because it is scarcely detectable from the top view. Situation can be well understood by electrical analysis using the nano probe. Due to its ability to probing contact nodes around the fail area, a ring type crystalline defect which is hardly detected from the top view was effectively analyzed by 3D TEM with the assistance of nano probe. This work shows that hybrid analysis of electrical method by nano probe and physical method by 3D TEM is useful and effective in failure analysis in semiconductor.