Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
O. Ogundipe
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 206-210, October 31–November 4, 2021,
Abstract
PDF
In this work, we investigate mushroom type phase-change material (PCM) memory cells based on Ge 2 Sb 2 Te 5 . We use low-angle annular dark field (LAADF) STEM imaging and energy dispersive X-ray spectroscopy (EDX) to study changes in microstructure and elemental distributions in the PCM cells before and after SET and RESET conditions. We describe the microscope settings required to reveal the amorphous dome in the RESET state and present an application example involving the failure analysis of a PCM test array made with devices fabricated at IBM’s Albany AI Hardware Research Center.
Proceedings Papers
ISTFA2020, ISTFA 2020: Papers Accepted for the Planned 46th International Symposium for Testing and Failure Analysis, 198-201, November 15–19, 2020,
Abstract
PDF
Power consumption of conventional CMOS semiconductor architectures has grown to the point where novel structures need to be introduced to mitigate the power load within the chip. The introduction of the specialized artificial intelligence devices goes hand in hand with the inception of novel materials and processes into conventional semiconductor fabrication, which drives the need for expanding the host of failure analysis techniques and diagnostic capabilities. This paper describes a case study of elemental transmission electron microscopy tomography on an exploratory phase change memory test structure and comments upon some technique observations: advantages and disadvantages.