Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
O. Crépel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2008, ISTFA 2008: Conference Proceedings from the 34th International Symposium for Testing and Failure Analysis, 233-237, November 2–6, 2008,
Abstract
PDF
Abstract Soft defects localization by laser techniques on dynamically working ICs is widely used for Failure Analysis (FA). In this context, many AC signal-oriented analysis methods have been introduced to date (SDL, LADA…) or are under development (xVM…). Sophisticated tools are available to localize these kinds of failures but not every FA laboratory has them. By fully exploiting the capabilities of static localization tools, it is possible to deal with timing issues. In this paper, we propose a novel application of the OBIRCh amplifier related to the timing issues on a real case study (mixed-mode device). This novel and very simple application makes the analysis flow time-attractive and enlarges the application field of mapping techniques on the existing tools.
Proceedings Papers
ISTFA2003, ISTFA 2003: Conference Proceedings from the 29th International Symposium for Testing and Failure Analysis, 440-445, November 2–6, 2003,
Abstract
PDF
Abstract We developed a system and a method to characterize the magnetic field induced by circuit board and electronic component, especially integrated inductor, with magnetic sensors. The different magnetic sensors are presented and several applications using this method are discussed. Particularly, in several semiconductor applications (e.g. Mobile phone), active dies are integrated with passive components. To minimize magnetic disturbance, arbitrary margin distances are used. We present a system to characterize precisely the magnetic emission to insure that the margin is sufficient and to reduce the size of the printed circuit board.