Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Nicolas Chevalier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2018, ISTFA 2018: Conference Proceedings from the 44th International Symposium for Testing and Failure Analysis, 209-213, October 28–November 1, 2018,
Abstract
View Paper
PDF
Dopants imaging using scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy are used for identifying doped areas within a device, the latter being analyzed either in a top view or in a side view. This paper presents a sample preparation workflow based on focused ion beam (FIB) use. A discussion is then conducted to assess advantages of the method and factors to monitor vigilantly. Dealing with FIB machining, any sample preparation geometry can be achieved, as it is for transmission electron microscopy (TEM) sample preparation: cross-section, planar, or inverted TEM preparation. This may pave the way to novel SCM imaging opportunities. As FIB milling generates a parasitic gallium implanted layer, a mechanical polishing step is needed to clean the specimen prior to SCM imaging. Efforts can be conducted to reduce the thickness of this layer, by reducing the acceleration voltage of the incident gallium ions, to ease sample cleaning.