Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Melissa O. Caseria
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2018, ISTFA 2018: Conference Proceedings from the 44th International Symposium for Testing and Failure Analysis, 496-504, October 28–November 1, 2018,
Abstract
PDF
Abstract Gallium Arsenide (GaAs) integrated circuits have become popular these days with superior speed/power products that permit the development of systems that otherwise would have made it impossible or impractical to construct using silicon semiconductors. However, failure analysis remains to be very challenging as GaAs material is easily dissolved when it is reacted with fuming nitric acid used during standard decapsulation process. By utilizing enhanced chemical decapsulation technique with mixture of fuming nitric acid and concentrated sulfuric acid at a low temperature backed with statistical analysis, successful plastic package decapsulation happens to be reproducible mainly for die level failure analysis purposes. The paper aims to develop a chemical decapsulation process with optimum parameters needed to successfully decapsulate plastic molded GaAs integrated circuits for die level failure analysis.