Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Martin Rasche
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 373-376, November 13–17, 2011,
Abstract
PDF
Abstract Chipscanning is the high-resolution, large-area, SEM image capture of complete (or partial) IC devices. Images are acquired sequentially in matrix-array fashion over an area of interest and large image mosaics are created from the collection of smaller images. Chipscanning is of keen interest to those involved with component obsolescence, design verification, anti-counterfeiting, etc. Chipscanning, and subsequent processing of the images, can also be used to reverse engineer an IC device. The reverse engineering process can be broken down into three main tasks; sample preparation, data collection, and data processing. We present practical insight into the data collection and data processing tasks and discuss an instrument platform uniquely suited for imaging such devices.