Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
M. Schade
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA1996, ISTFA 1996: Conference Proceedings from the 22nd International Symposium for Testing and Failure Analysis, 239-241, November 18–22, 1996,
Abstract
PDF
Abstract The p-n junction of a GaAs light emitting diode is fabricated using liquid phase epitaxy (LPE). The junction is grown on a Si doped (~10 18 /cm 3 ) GaAs substrate. Intermittent yield loss due to forward voltage snapback was observed. Historically, out of specification forward voltage (Vf) parameters have been correlated to abnormalities in the junction formation. Scanning electron (SEM) and optical microscopy of cleaved and stained samples revealed a continuous layer of material approximately 2.5 to 3.0 μm thick at the n-epi/substrate interface. Characterization of a defective wafer via secondary ion mass spectroscopy (SIMS) revealed an elevated concentration of O throughout the region containing the defect. X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) data taken from a wafer prior to growth of the epi layers did not reveal any unusual oxidation or contamination. Extensive review of the processing data suggested LPE furnace pressure was the obvious source of variability. Processing wafers through the LPE furnace with a slight positive H 2 gas pressure has greatly reduced the occurrence of this defect.