Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
M. Lipschutz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA1998, ISTFA 1998: Conference Proceedings from the 24th International Symposium for Testing and Failure Analysis, 83-91, November 15–19, 1998,
Abstract
PDF
Abstract This article details the results of a failure analysis performed on a Qualification Unit injector for a military satellite thrusters and explains that the failure was initially detected due to a shift in performance during qualification testing. Failure analysis involved non-destructive evaluation on the injector using micro-focus X-ray and scanning electron microscopy. Serial cross-sectional metallography was then performed, with each cross-section documented by optical microscopy and SEM. The failure analysis resulted in three main conclusions: (1) the root cause of the failure was attributed to multiple detonations in or around the damaged orifice; these detonations were likely caused by fuel and/or combustion products condensing in the orifice between pulses and then igniting during a subsequent pulse; (2) multiple damage mechanisms were identified in addition to the ZOT detonations; and (3) the material and platelet manufacturing process met all design parameters.