Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Lo Chea Wee
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2018, ISTFA 2018: Conference Proceedings from the 44th International Symposium for Testing and Failure Analysis, 429-436, October 28–November 1, 2018,
Abstract
PDF
Abstract Advanced package technology often includes multi-chips in one package to accommodate the technology demand on size & functionality. Die tilting leads to poor device performance for all kinds of multi-chip packages such as chip by chip (CbC), chip on chip (CoC), and the package with both CbC and CoC. Traditional die tilting measured by optical microscopy and scanning electron microscopy has capability issue due to wave or electron beam blocking at area of interest by electronic components nearby. In this paper, the feasibility of using profilemeter to investigate die tilting in single and multi-chips is demonstrated. Our results validate that the profilemeter is the most profound metrology for die tilting analysis especially on multi-chip packages, and can achieve an accuracy of <2μm comparable to SEM.