Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Lionel Dantas de Morais
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 256-261, November 13–17, 2011,
Abstract
PDF
Abstract This paper presents a new sample preparation process for front side access for die with organic dielectric layers that are encapsulated in plastic packages. The limitation of the standard failure analysis flow is firstly described, showing the damage caused by wet etching. Then, the decapsulation method combining laser ablation and plasma etching is presented. It is completed by the process optimization. The final process makes it possible to perform failure analysis on low-k/Cu technologies in plastic package either by the front side or by the backside of the die.
Proceedings Papers
ISTFA2002, ISTFA 2002: Conference Proceedings from the 28th International Symposium for Testing and Failure Analysis, 147-153, November 3–7, 2002,
Abstract
PDF
Abstract Defects localization from the IC’s backside using hot spot detection techniques is discussed. Simulations are used to validate the applicability of hot spot detection from the silicon backside and to determine the optimal experimental conditions. The effects of the dissipated power, the substrate thickness and the defect position relative to the chip area are studied. These simulations take into account the thermal dependence of the silicon thermal conductivity. Transient simulations are also performed to evaluate the effect of modulating the power on the backside temperature difference. Backside Liquid Crystal Microscopy as well as Infrared Thermography and Thermal Laser Stimulation results on defective ICs are presented.