Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Lava Ranganathan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 196-200, November 5–9, 2017,
Abstract
View Paper
PDF
Dynamic Laser Stimulation using Continuous Wave (CW) Lasers has been a very important technique in fault isolating soft failures due to process defects and design speed paths in microprocessors. However, the rapid scaling down of the process technologies and the high density of logic laid out in silicon has made it difficult to precisely fault isolate using a conventional continuous wave laser which has a laser spot size of about ~300nm. Also, the remnant effects of a CW laser DLS like banding due to n-well interactions make it further difficult to achieve high resolution fault isolation. In this paper we discuss how by using a modulated pico-second pulsed laser, a DLS suspect is isolated to cell internal nets, which using a CW laser spanned across multiple cells. This is achieved by modulating the pulsed laser using an Electro-optical modulator and restricting the stimulation to only those parts of a test-pattern where the signal propagation occurs. Also, by synchronizing the pulsed laser with the clock of the test-program and changing the laser pulse delivery in time, high stimulation levels were achieved without being invasive. This revealed extra data points (DLS sites) that can help with making precisely accurate Physical FA plans that reduce turnaround time and also ensure high success rates. Specifically, in the case of a bridging defect between two nets wherein DLS sites were only seen on the victim net using conventional CW laser, the time resolved pulsed laser revealed DLS sites on the aggressor net as well. This confirmed the bridging between the two nets since the aggressor net was not electrically connected with the victim net. We discuss in detail how the DLS sites play their role in framing the perfect Physical FA plan. A detailed study of the resolution achieved using time resolved pulsed laser and its comparison with the same using a CW laser is shown on 14nm FinFET technology.
Proceedings Papers
ISTFA2017, ISTFA 2017: Conference Proceedings from the 43rd International Symposium for Testing and Failure Analysis, 214-220, November 5–9, 2017,
Abstract
View Paper
PDF
Critical speed path analysis using Dynamic Laser Stimulation (DLS) technique has been an indispensable technology used in the Semiconductor IC industry for identifying process defects, design and layout issues that limit product speed performance. Primarily by injecting heat or injecting photocurrent in the active diffusion of the transistors, the laser either slows down or speeds up the switching speed of transistors, thereby affecting the overall speed performance of the chip and revealing the speed limiting/enhancing circuits. However, recently on Qualcomm Technologies’ 14nm FinFET technology SOC product, the 1340nm laser’s heating characteristic revealed a Vt (threshold voltage) improvement behavior at low operating voltages which helped identify process issues on multiple memory array blocks across multiple cores failing for MBIST (Memory Built-in Self-test). In this paper, we explore the innovative approach of using the laser to study Vt shifts in transistors due to process issues. We also study the laser silicon interactions through scanning the 1340nm thermal laser on silicon and observing frequency shifts in a high-speed Ring Oscillator (RO) on 16nm FinFET technology. This revealed the normal and reverse Temperature Dependency Gate voltages for 16nm FinFET, thereby illustrating the dual nature of stimulation (reducing mobility and improving Vt) from a thermal laser. Frequency mapping through Laser Voltage Imaging (LVI) was performed on the Ring Oscillator (RO) using the 1340nm thermal laser, while concurrently stimulating the transistors of the RO. Spatial distribution of stimulation was studied by observing the frequency changes on LVI.