Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Kyeongju Jin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2016, ISTFA 2016: Conference Proceedings from the 42nd International Symposium for Testing and Failure Analysis, 561-563, November 6–10, 2016,
Abstract
PDF
In most of the non-destructive electrical fault isolation cases, techniques such as DLS, Photon Emission, LIT, OBIRCH indicate a fault location directly. But relying on just one of these techniques for marginal failure mechanism is not enough for better fault localization. When Failure Analysis (FA) engineers encounter high NDF (No Defect Found) rates, by using only one of the techniques, they may need to consider the relationship between the responded locations by different techniques and fail phenomenon for better defect isolation. This paper talks about how a responded DLS location does not always indicate a fault location and how LVP data collected using DLS location can pin point the real defect location.
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 241-244, November 1–5, 2015,
Abstract
PDF
In the case of conventional planar FET, Dynamic Laser Stimulation (DLS) is a very effective method to isolate marginal failure. Depending on laser sources, DLS is divided by Soft Defect Localization (SDL) and Laser Assisted Device Alteration (LADA). SDL uses 1320nm wavelength laser source in order to induce localized heat. On the other hand, LADA uses 1064nm wavelength laser source to generate photo carriers. But for the FinFET the effect of laser stimulation is not clear yet. This paper introduces the effect of laser stimulation on FinFET transistors based on wavelength, the so called LADA and two-photon LADA. The experimental data show changes in Vth and Idsat with different character for a single FinFET transistor. A case study further explains this laser stimulation effect via scan chain LVcc marginal failure analysis localized with 1320nm CW laser stimulation and nano-probing analysis.