Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
J.C. Lin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2004, ISTFA 2004: Conference Proceedings from the 30th International Symposium for Testing and Failure Analysis, 677-679, November 14–18, 2004,
Abstract
PDF
Abstract Scanning capacitance microscopy (SCM), a powerful technique to identify front-end defects, is also helpful in understanding failure mechanisms. This article discusses three front-end doping failure examples that were clearly identified by SCM analysis. The first example was NMOS leakage between drain and source. SCM images showed that N+ junction distortion resulted in effective channel length shortage. The second one was by-field SRAM failure with power leakage. From SCM images, it is clarified that P-well was directly short to P+ in bad die and slight P-well boundary shift to P+ was observed in good die. The third example was regarding low threshold voltage failure analysis. It illustrates that combination of plane-view and cross-sectional SCM analysis could help to diagnose the failure mechanism. The resolution and precision in SCM is better than that in chemical etching combined with SEM technique.