Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
J.A. Kash
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA1998, ISTFA 1998: Conference Proceedings from the 24th International Symposium for Testing and Failure Analysis, 483-488, November 15–19, 1998,
Abstract
PDF
Abstract A noninvasive backside probe of integrated circuits has been developed. This new probe can diagnose at-speed failures, stuck faults, and other defects. Because it is a highly parallel imaging technique, faults may be isolated which are difficult to locate by other methods. This optical technique has been named “PICA”, for picosecond imaging circuit analysis. PICA relies on the fact that an FET in a CMOS circuit emits a picosecond pulse of light each time the logic gate changes state. The source of this emission is explained. The PICA technique, which combines optical imaging of the emission with picosecond time-resolution, is described. Because of the imaging, time-resolved emission data is acquired for many transistors in parallel. The use of the emission for failure analysis and AC characterization of integrated circuits is demonstrated. Because the emission can be detected from either the front or back side of the chip, it can be used for both front and back side analysis.