Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Article Type
Volume Subject Area
Date
Availability
1-3 of 3
Giovanni Nicoletti
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2011, ISTFA 2011: Conference Proceedings from the 37th International Symposium for Testing and Failure Analysis, 419-423, November 13–17, 2011,
Abstract
PDF
Abstract In case of power semiconductor analysis, classical failure localization methods are restricted in application due to thick, closed metal layers and high-dose bulk-Si implants, making backside access difficult. Furthermore, defect traces in power semiconductors are often such severe that no conclusive FA is possible anymore. The new roadmap considers these specialties and shows ways how to deal with them, showing ways to conclusive results.
Proceedings Papers
ISTFA2010, ISTFA 2010: Conference Proceedings from the 36th International Symposium for Testing and Failure Analysis, 444-448, November 14–18, 2010,
Abstract
PDF
Abstract Since new packaging technologies came up, sensitive failure modes, which were difficult to prove, increased. In many cases, an interaction of bending properties, thermomechanical stress and the material compounds used, cause intermittent failures related to electrical connections. Since any decapsulation might falsify analysis results, non-destructive characterization approaches are of utmost importance for future failure analysis. By means of a typical case study, the capabilities and limitations of a highly developed X-ray tool in such application has been outlined as well as the complexity of root cause findings.
Proceedings Papers
ISTFA2000, ISTFA 2000: Conference Proceedings from the 26th International Symposium for Testing and Failure Analysis, 35-40, November 12–16, 2000,
Abstract
PDF
Abstract Bond pad characterization is usually performed by mechanical cross-sectioning as well as pull and shear tests. However, since all these methods apply mechanical forces to the bond pad, artifacts may result. Focused Ion Beam (FIB) characterization is a mechanically stress-free characterization method, which allows more accurate conclusions regarding the intermetallic behaviour of the bonding area. Some new approaches presented here show how to improve the FIB characterization procedure and to combine it with classical characterization methods.