Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Gerald S. D’Urso
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2000, ISTFA 2000: Conference Proceedings from the 26th International Symposium for Testing and Failure Analysis, 263-266, November 12–16, 2000,
Abstract
PDF
Abstract When a failure analysis (FA) involves a multiple layer structure separated by a polymeric material such as Benzocyclobutene (BCB), in a plastic package, it becomes a very challenging task to find out where the failure site is and how it failed. This is due to the fact that the chemical de-processing procedure removes BCB as well as the plastic molding compound. This paper outlines the studies carried out to determine the failure site and the root cause of the failure mechanism in a multilayer circuit and the steps taken to fix the problems. The methodology and results of this study are applicable to many other types of circuits.