Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Frederik Platter
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 1-5, October 31–November 4, 2021,
Abstract
PDF
In their daily work, engineers in semiconductor Failure Analysis (FA) laboratories generate numerous documents, recording the tasks, findings, and conclusions related to every device they handle. This data stores valuable knowledge for the laboratory that other experts can consult, but being in the form of a collection of documents pertaining to particular devices and their processing history makes it difficult if not practically impossible to find answers to specific questions. This paper therefore proposes a Natural Language Processing (NLP) solution to make the gathering of FA knowledge from numerous documents more efficient. It explains how the authors generated a dataset of FA reports along with corresponding electrical signatures and physical failures in order to train different machine-learning algorithms and compare their performance. Three of the most common classification algorithms were used in the study: K-Nearest Neighbors (kNN), Support Vector Machines (SVM), and Deep Neural Networks (DNN). All of the classification models produced were able to capture patterns associated with different types of failures and predict the causes. The outcomes were best with the SVM classifier and all classifiers did slightly better in regard to physical faults. The reasons are discussed in the paper, which also provides suggestions for future work.