Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Christophe Charles
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2019, ISTFA 2019: Conference Proceedings from the 45th International Symposium for Testing and Failure Analysis, 130-134, November 10–14, 2019,
Abstract
PDF
Abstract FIB/SEM and TEM are standard characterization techniques for evaluation of process modification of microelectronics samples. In this paper, artefacts from these techniques are studied. The sample preparation methods are optimized to avoid damages. Seal-ring structures are chosen as an example in this study to show artefacts and difficulties in SEM and TEM observations. Two cases of artefacts are considered: one with TEM sample preparation followed by TEM imaging, and the other one with SEM observations after FIB cross-sectioning. In the first case, electronic chips that failed during stress tests are investigated, while in the second case a part has been dismissed during robustness qualification test. In the former, thickness of TEM lamellae has been evidenced as a key factor for delamination between layers under beam, whereas in the latter, it was observed that the electron beam lead to a shrink of oxide layers, which induced the break of underlying contacts.