Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-2 of 2
Bill Cardoso
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2018, ISTFA 2018: Conference Proceedings from the 44th International Symposium for Testing and Failure Analysis, 73-78, October 28–November 1, 2018,
Abstract
PDF
Abstract In this work, we introduce the use of the x-ray image as the unique fingerprint for an electronic component or printed circuit board assembly (PCBA). Unique features of the x-ray image include solder voids, cracks, part alignment, die attach porosity and voiding, die placement and alignment, and wire bonding diagram. These are just a few of the many features in the x-ray image that can be used in tandem to create a unique fingerprint for a single component or an entire PCBA. This technique can also be expanded to mechanical objects by utilizing other idiosyncratic features of the part - such as voids and porosity - to generate the x-ray image fingerprint.
Proceedings Papers
ISTFA2015, ISTFA 2015: Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, 189-198, November 1–5, 2015,
Abstract
PDF
Abstract The drive towards miniaturization has created increasing challenges to the overall failure analysis and quality inspection of electronic devices. This trend has equally challenged the image quality of x-ray inspection systems – engineers need to see more details in each inspection. Image quality is paramount to the ability of making actionable decisions on the information acquired from an x-ray machine. Previous generations of x-ray technologies have focused on hardware improvements – better x-ray sources and better x-ray sensors. Although further improvements can still be achieved in hardware, our focus will be on the latest wave of technology breakthroughs and innovation in radiography systems: algorithms.