Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Anthony V. Dao
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2016, ISTFA 2016: Conference Proceedings from the 42nd International Symposium for Testing and Failure Analysis, 204-207, November 6–10, 2016,
Abstract
View Paper
PDF
Post silicon validation techniques specifically Focused Ion Beam (FIB) circuit editing and Failure Analysis (FA) require sample preparation on Integrated Circuits (IC). Although these preparation techniques are typically done globally across the encapsulated and silicon packaging materials, in some scenarios with tight mechanical or thermal boundary conditions, only a local approach can be attempted for the analysis. This local approach to access the underlying features, such as circuits, solder bumps, and electrical traces can be divided into two modification approaches. The back side approach is typically done for die level analysis by de-processing through encapsulated mold compound and silicon gaining access to the silicon transistor level. On the other hand, the front side approach is typically used for package level analysis by de-processing the ball grid array (BGA) and package substrate layers. Both of these local de-processing approaches can be done by using the conventional Laser Chemical Etching (LCE) platforms. The focus of this paper will be to investigate a front side modification approach to provide substrate material removal solutions. Process details and techniques will be discussed to gain access to metal signals for further failure analysis and debug. A pulse laser will be used at various processing stages to de-process IC package substrate materials.