Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Andriy Andreyev
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2021, ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis, 291-295, October 31–November 4, 2021,
Abstract
View Paper
PDF
3D X-ray tomography plays a critical role in electronic device failure analysis, but it can take several hours to overnight to get sufficient resolution in fault regions to detect and identify defects. In this paper, we propose a machine learning based reconstruction technique that can speed up data acquisition by a factor of four or more, while maintaining image quality. The method, which uses neural networks, extracts signals from low-dose data more efficiently than the conventional Feldkamp-Davis-Kress (FDK) approach, which is sensitive to noise and prone to aliasing errors. Several semiconductor packages and a commercial smartwatch battery module are analyzed using the new technique and the results compared with those obtained using conventional methods. The neural network can be trained on as little as one tomography image and the only requirement for the training data is that the sample or region of interest is well represented with all characteristic features in the field-of-view.