Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
Alain Wislez
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2002, ISTFA 2002: Conference Proceedings from the 28th International Symposium for Testing and Failure Analysis, 543-551, November 3–7, 2002,
Abstract
PDF
Abstract The application of laser beam based techniques for ESD defect localization in silicon and gallium arsenide integrated circuits is studied. The Thermal Laser Stimulation technique (OBIRCH, TIVA) is shown to precisely localize electrostatic discharge (ESD) defects under low voltage and current consumption, thus avoiding device or defect degradation upon testing. It is also shown that nonbiased Thermal Laser Stimulation (SEI) tests can localize ESD defects in the silicon substrate. Physical analysis revealed that a thermocouple composed of molten silicon with crystalline silicon generated a Seebeck voltage sufficiently large to be detected. Finally, the pulsed Optical Beam Induced Current technique (OBIC) under no bias condition was evaluated and compared to both biased and nonbiased Thermal Laser Stimulation techniques. It proved to be complementary as it offers a different insight into the ESD induced degradation.