Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A. N. Erickson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2004, ISTFA 2004: Conference Proceedings from the 30th International Symposium for Testing and Failure Analysis, 42-46, November 14–18, 2004,
Abstract
PDF
Abstract Many of the standard techniques of Failure Analysis (FA) are breaking down or becoming less useful as feature sizes drop below 100nm. The tenth micron milestone appears to be a fundamental limitation to many common techniques. Use of Current Image-Atomic Force Microscopy (CI-AFM) combined with Atomic Force Probing (AFP) brings about a combination of technologies, which allow for extension of FA below the nano-scale.