Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Subjects
Article Type
Volume Subject Area
Date
Availability
1-1 of 1
A. Delobbe
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
ISTFA2012, ISTFA 2012: Conference Proceedings from the 38th International Symposium for Testing and Failure Analysis, 26-29, November 11–15, 2012,
Abstract
View Paper
PDF
The standard Ga focused ion beam (FIB) technology is facing challenges because of a request for large volume removal. This is true in the field of failure analysis. This article presents the first combined tool which can fulfill this requirement. This tool offers the combination of a high resolution scanning electron microscope (SEM) and a high current FIB with Xe plasma ion source. The article focuses on failure analysis examples and discusses the different steps of extra large cross sections (deposition of protective layer, rough milling, and polishing). Several applications of the novel Xe plasma FIB/SEM instrument are shown with respect to the failure analysis. The performance of the instrument is tested and discussed in comparison to gallium liquid metal ion source FIB systems. Results show that the Xe plasma FIB offers much higher milling rate, greatly reducing the time necessary for many failure analysis tasks.