Abstract
Integrated circuit (IC) de-processing is a crucial step in failure analysis (FA) for defect validation and root cause identification. The commonly used FA de-processing technique is top-down delayering, this is because of faster and easier for sample preparation. However, backside de-processing is occasionally necessary for fault isolation, better root cause understanding, and formulating the failing mechanism such as gate oxide defects, front-end of line (FEOL) defects, back-end of line (BEOL) vertical shorts, high power Ga-N on Silicon (Si) substrate device, etc. This paper introduces an innovative backside de-processing method for ICs utilizing laser ablation by employing a commercial laser decapsulation system. We thin the backside Si substrate via laser ablation and subsequent chemical etching, revealing FEOL defects. Experimental results demonstrate the method's efficiency, offering enhanced sample handling and reduced preparation time. The proposed backside laser de-processing technique proves to be a superior choice compared to conventional methods in terms of success rate, de-processing speed, and cost-effectiveness. This research contributes to advancing FA methodologies by introducing an innovative approach for backside physical FA applications, opening new possibilities for efficient and accurate IC analysis.