We introduce a new infrared (IR) technique that provides submicron spatial resolution by making use of an infraredvisible, pump-probe arrangement that also offers a simultaneous Raman measurement in formerly challenging failure and contamination analyses. These challenges are typically due to the lack of spatial resolution and sample preparation restrictions from conventional FTIR, plus auto-fluorescence (AF) from Raman spectroscopy. Such a combined Optical PhotoThermal InfraRed (O-PTIR) and Raman instrumentation offers spatial resolution improvement over conventional IR measurements by 30 times at 1000 cm-1. The technique also improves sensitivity to exceptionally small quantities (? 400 femtogram) in reflection mode by sensing the photothermal response arising from absorbing infrared radiation (Fig. 1) [1]. The AF-free O-PTIR technique also delivers constant spatial resolution over the entire mid-IR range due to the use of a fixed wavelength probe beam at 532 nm [2]. Simultaneous Raman confirms and complements the O-PTIR measurements in cases with low AF. We will illustrate three examples that will highlight the advantage of the novel technique commonly observed in the failure and contamination analysis community.

This content is only available as a PDF.