One approach for finding faults in integrated circuits (ICs) is magnetic imaging, where we map the magnetic fields emitted by internal currents in the device and use this knowledge to infer the current paths and fault locations. This gives us access to information about the IC internal properties without needing voltage probes, as the magnetic fields are unimpeded by opaque insulating and conducting layers. Magnetic imaging benefits from optimizing the spatial resolution and minimizing the standoff distance between the magnetic sensor and the circuit, motivating new experimental approaches that excel at these attributes. In this work, we apply the quantum diamond microscope (QDM) instrument to example failure analysis situations, building on our previous work using the QDM to interrogate the internal states of commercial ICs to achieve micrometer-scale spatial resolution and standoff distance.

This content is only available as a PDF.
You do not currently have access to this content.