Abstract
This presentation provides an overview of the tools and techniques that can be used to analyze failures in semiconductor devices made with 3D technology. It assesses the current state of 3D technology and identifies common problems, reliability issues, and likely modes of failure. It compares and contrasts all relevant measurement techniques, including X-ray computed tomography, scanning acoustic microscopy (SAM), laser ultrasonics, ultrasonic beam induced resistance change (SOBIRCH), magnetic current imaging, magnetic field imaging, and magneto-optical frequency mapping (MOFM) as well as time domain reflectometry (TDR), electro-optical terahertz pulsed reflectometry (EOTPR), lock-in thermography (LIT), confocal scanning IR laser microscopy, infrared polariscopy, and photon emission microscopy (PEM). It also covers light-induced voltage alteration (LIVA), light-induced capacitance alteration (LICA), lock-in thermal laser stimulation (LI-TLS), and beam-based techniques, including voltage contrast (VC), electron-beam absorbed current (EBAC), FIB/SEM 3D imaging, and scanning TEM imaging (STEM). It covers the basic principles as well as advantages and limitations of each method.