Currently gaps in non-destructive 2D and 3D imaging in PFA for advanced packages and MEMS exist due to lack of resolution to resolve sub-micron defects and the lack of contrast to image defects within the low Z materials. These low Z defects in advanced packages include sidewall delamination between Si die and underfill, bulk cracks in the underfill, in organic substrates, Redistribution Layer, RDL; Si die cracks; voids within the underfill and in the epoxy. Similarly, failure modes in MEMS are often within low Z materials, such as Si and polymers. Many of these are a result of mechanical shock resulting in cracks in structures, packaging fractures, die adhesion issues or particles movements into critical locations. Most of these categories of defects cannot be detected non-destructively by existing techniques such as C-SAM or microCT (micro x-ray computed tomography) and XRM (X-ray microscope). We describe a novel lab-based X-ray Phase contrast and Dark-field/Scattering Contrast system with the potential to resolve these types of defects. This novel X-ray microscopy has spatial resolution of 0.5 um in absorption contrast and with the added capability of Talbot interferometry to resolve failure issues which are related to defects within organic and low Z components.

This content is only available as a PDF.
You do not currently have access to this content.