Abstract

Correlation across applications and imaging platforms is essential and brings increased insurance for fault isolation in advance of destructive imaging. This paper demonstrates an approach for a detailed advanced packaging defect isolation and analysis workflow. To determine the effectiveness of the proposed workflow, a 28nm flip-chip was used as a test vehicle. By using this workflow, the yield in determining the fault location has increased from 60% to over 85%. To further improve the result, a surface charging mitigation scheme was used and the resulting measured correlative offset between the two systems was found to be less than 10um. This creates novel opportunities in reducing the size of the cross-section and increasing the overall throughput to find the defect, with high confidence. This workflow creates unique abilities in fault localization and analysis as it can detect both opens and shorts between the different techniques that are employed.

This content is only available as a PDF.
You do not currently have access to this content.