Abstract

Contamination and particle reduction are critical to semiconductor process control. Lots of failure analysis had been focused on finding the root cause of the particle and contamination. The particle and contamination effect were also easily found in circuit probing (CP) process, and therefore induced yield loss and wafer scrap. In the first part of this paper, an oven contamination case was studied. The second part of this paper focus on oven contamination monitoring.

In the beginning, a die flying failure was papered at the stage of blue tape and die sawing. This event clearly indicated bad adhesion between die and plastic tape. This bad adhesion was suspected to be a particle/contamination layer formed on bad die surface. Three failure analysis (FA) approaches were performed to find out the root cause. The SEM/EDS result identified the main elements of big particle, but that is insufficient to identify the root cause. The OM/FTIR, however, showed the contamination may be related to polydimethylsiloxane (PDMS). The last failure analysis was the time of fly Secondary Ion Mass Spectrometer (TOF-SIMS), the result confirmed that there was a thin PDMS layer formed on the contaminated bad die surface. The high temperature CP process induced PDMS is believed to be the contamination root cause. In order to prevent the oven contamination event, a methodology based on contact angle and wettability of Si matrix sample was set up for regular monitor in oven operation. The details of contact angle test (CAT) sample preparation, measurement and analysis results were also discussed in this paper.

This content is only available as a PDF.
You do not currently have access to this content.