Abstract

This paper describes the investigation of donut-shaped probe marker discolorations found on Al bondpads. Based on SEM/EDS, TEM/EELS, and Auger analysis, the corrosion product is a combination of aluminum, fluorine, and oxygen, implying that the discolorations are due to the presence of fluorine. Highly accelerated stress tests simulating one year of storage in air resulted in no new or worsening discolorations in the affected chips. In order to identify the exact cause of the fluorine-induced corrosion, the authors developed an automated inspection system that scans an entire wafer, recording and quantifying image contrast and brightness variations associated with discolorations. Dark field TEM images reveal thickness variations of up to 5 nm in the corrosion film, and EELS line scan data show the corresponding compositional distributions. The findings indicate that fluorine-containing gases used in upstream processes leave residues behind that are driven in to the Al bondpads by probe-tip forces and activated by the electric field generated during CP testing. The knowledge acquired has proven helpful in managing the problem.

This content is only available as a PDF.
You do not currently have access to this content.