Abstract

Continuing advances in Atom Probe Tomography and Focused Ion Beam Scanning Electron Microscope technologies along with the development of new specimen preparation approaches have resulted in reliable methods for acquiring 3D subnanometer compositional data from device structures. The routine procedure is demonstrated here by the analysis of the silicon-germanium source-drain region of a field effect transistor from a de-packaged off-the-shelf 28 nm design rule graphics chip. The center of the silicon-germanium sourcedrain region was found to have approximately 180 ppm of boron and the silicide contact was found to contain both titanium and platinum.

This content is only available as a PDF.
You do not currently have access to this content.