Electron-beam induced radiation damage can give rise to large structural collapse and deformation of low k and ultra low k IMD in semiconductor devices, posing great challenges for failure analysis by electron microscopes. Such radiation damage has been frequently observed during both sample preparation by dual-beam FIB and TEM imaging. To minimize radiation damage, in this work we performed systematic studies on every possible failure analysis step that could introduce radiation damage, i.e., pre-FIB sample preparation, FIB milling, and TEM imaging. Based on these studies, we utilized comprehensive technical solutions to radiation damage by each failure analysis step, i.e., low-dose/low-kV FIB and low-dose TEM techniques. We propose and utilize the low-dose TEM imaging techniques on conventional TEM tools without using low-dose imaging control interface/software. With these new methodologies or techniques, the electron-beam induced radiation damage to ultra low k IMD has been successfully minimized, and the combination of single-beam FIB milling and low-dose TEM imaging techniques can reduce structure collapse and shrinkage to almost zero.

This content is only available as a PDF.
You do not currently have access to this content.