Abstract
Sub-nanometer focused inert gas ions derived from a Gas Field Ion Source (GFIS) contain properties that can improve the dimensional and conductivity characteristics of ion beam deposited platinum circuit edit wiring. The following paper, presents ion interaction simulations that help provide insight into the factors which determine the ultimate wire width, resistivity, and metal deposition rates. An experimental result that has aided in the understanding of the primary wire width limiting mechanism is also presented. Finally, a description of the ion beam and precursor properties used for the platinum deposition is provided, a long with a discussion of the wire resistivity measurement technique and challenges. To conclude, the prospects for GFIS ion induced dielectric and metal deposition for circuit edit and nanofabrication applications are discussed.