The continuous miniaturization trends followed by a vast majority of electronic applications results in always denser PCBs (Printed Circuit Board) designs and PCBAs (Printed Circuit Board Assembly) with increasing solder joint densities. Current high-end designs feature high layer count sequential build-up PCBs with fine lines/spaces and numerous stacked filled microvias, as well as closely spaced BGA/QFN components with pitches down to 0.4mm. In recent years, several 3D packaging approaches have emerged to further increase system integration by enabling the stacking of several dies or packages. This has translated for example into the advent of highly integrated complex System in Package (SiP) modules, Package-on-Package (PoP) assemblies or chips embedded in PCBs [1]. From a failure analysis (FA) perspective, this deep technology evolution is setting extreme challenges for accurately locating a failure site, especially when destructive techniques are not desired. The few conventional non-destructive techniques like optical or x-ray inspection are now practically becoming useless for high density PCB designs. This paper reviews several advanced analysis techniques that could be used to overcome these limitations. It will be shown through several examples how three non-destructive methods usually dedicated to package analyses can be efficiently adapted to PCBs and PCBAs: • Scanning Acoustic Microscopy (SAM) • 3D X-ray Computed Tomography (CT) • Infrared Thermography A case study of a flex-rigid board FA is presented to show the efficiency of these three techniques over classical techniques. In this example, not only the defect localization has been possible, but also the defect characterization without using destructive analysis.

This content is only available as a PDF.
You do not currently have access to this content.