Abstract

Laser-based failure-analysis techniques such as optical beam-induced current (OBIC) or optical beam-induced resistance change (OBIRCH) involve scanning a focused laser beam across a sample by means of a laser scanning microscope (LSM). In this paper, we demonstrate a new method of obtaining OBIC data without requiring a laser or an LSM. Instead, we employ new techniques from the field of compressive sensing (CS). We use an incoherent light source and a spatial light modulator in an image plane of the device under test, supplying a series of pseudo-random on/off illumination patterns (structured illumination) and recording the resulting electrical (photocurrent) signals from the device. Advanced algorithms allow us to reconstruct the signal for the entire die. We present results from OBIC measurements on a discrete transistor and discuss extensions of CS techniques to OBIRCH. We also demonstrate static emission images obtained using CS techniques in which the incoherent light source is replaced with a single-element infrared photon detector so that no detector array is required.

This content is only available as a PDF.
You do not currently have access to this content.