In this paper, a methodology based upon laser stimulation and a comparison of continuous wave and pulsed laser operation will be presented that localizes the fault relevant sites in a fully functional scan chain cell. The technique uses a laser incident from the backside to inject soft faults into internal nodes of a master-slave scan flip-flop in consequence of localized photocurrent. Depending on the illuminated type of the transistors (n- or p-type), injection of a logic ‘0’ or ‘1’ into the master or the slave stage of a flip-flop takes place. The laser pulse is externally triggered and can easily be shifted to various time slots in reference to clock and scan pattern. This feature of the laser diode allows triggering the laser pulse on the rising or the falling edge of the clock. Therefore, it is possible to choose the stage of the flip-flop in which the fault injection should occur. It is also demonstrated that the technique is able to identify the most sensitive signal condition for fault injection with a better time resolution than the pulse width of the laser, a significant improvement for failure analysis of integrated circuits.

This content is only available as a PDF.
You do not currently have access to this content.