Novel Fabry Perot [1] fringe analysis techniques for monitoring the etching process with a coaxial photon-ion column [2] in the Credence OptiFIB are reported. Presently the primary application of these techniques in circuit edit is in trenching either from the front side or from the backside of a device. Optical fringes are observed in reflection geometry through the imaging system when the trench floor is thin and semi-transparent. The observed fringes result from optical interference in the etalon formed between the trench floor (Si in the case of backside trenching) and the circuitry layer beyond the trench floor. In-situ real-time thickness measurements and slope correction techniques are proposed that improve endpoint detection and control planarity of the trench floor. For successful through silicon edits, reliable endpoint detection and co-planarity of a local trench is important. Reliable endpoint detection prevents milling through bulk silicon and damaging active circuitry. Uneven trench floor thickness results in premature endpoint detection with sufficient thickness remaining in only part of the trench area. Good co-planarity of the trench floor also minimizes variability in the aspect ratios of the edit holes, hence increasing success rates in circuit edit.

This content is only available as a PDF.
You do not currently have access to this content.