Abstract

The availability of the focused ion beam (FIB) microscope with its excellent imaging resolution, depth of focus and ion milling capability has made it an appealing platform for materials characterization at the sub-micron, or "nano" level. This article focuses on nanomechanical characterization in the FIB, which is an extension of the FIB capabilities into the realm of nano-technology. It presents examples that demonstrate the power and flexibility of nanomechanical testing in the FIB or scanning electron microscope with a probe shaft that includes a built-in strain gauge. Loads that range from grams to micrograms are achievable. Calibration is limited only by the availability of calibrated load cells in the smallest load ranges. Deflections in the range of a few nanometers range can be accurately applied. Simultaneous electrical, mechanical, and visual data can be combined to provide a revealing study of physical behavior of complex and dynamic nanostructures.

This content is only available as a PDF.
You do not currently have access to this content.