Abstract
Scanning acoustic microscopy (SAM) is a non-destructive tool for analysis of packaged devices. New materials, package configurations, and technologies have required adaptation of standard practices in SAM. The detection of cracked die, voids, or delamination in the underfill or package are standard issues for SAM. SAM can routinely detect large cracks through the central 80% of the die; however, the occurrence of smaller cracks at the edge of the flip chip die is problematic. This article proposes a model in which alteration in the standard SAM parameters, the gain and Time-of-Flight, enable detection of die edge cracks in assembled Flip Chip devices. IR imaging after thinning and polishing of the die confirms the die edge cracks. The SAM analysis can replace the IR imaging for detection of small die edge cracks taking minutes to complete instead of the hours involved in the sample preparation for IR imaging.